HZ2105

高亮 LED 升压 IC

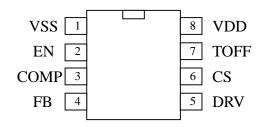
概述:

HZ2105 是一款高效率,稳定可靠的高亮度 LED 灯驱动控制 IC,内置高精度比较器,off-time 控制电路,恒流驱动控制电路等,特别适合大功率,多个高亮度 LED 灯串恒流驱动。

HZ2105 采用固定 off-time 控制工作方式,其工作频率高达 2.5MHz,可使外部电感和滤波电容、体积减少,效率提高。off-time 最小时间,可通过外部电阻和电感进行设置,工作频率根据用户要求而改变。在 EN 端加 PWM 信号,可调节 LED 灯的亮度。

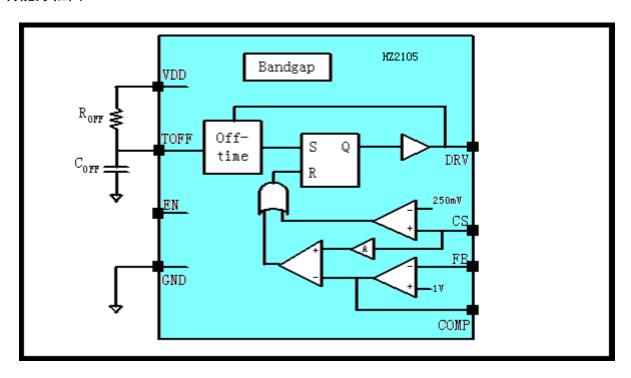
通过调节外置的电阻,能控制高亮度 LED 灯的驱动电流,使 LED 灯亮度达到预期恒定亮度,流过高亮度 LED 灯的电流可从几毫安到 1 安培变化。

特性:


- ※ 可编程驱动电流
- ※ 高效率: 最高达 90%
- ※ 宽输入电压范围: 2V~24V
- ※ 高工作频率: >1.5MHz
- ※ 工作频率可调: 500KHz~1.5MHz
- ※ 驱动 LED 灯功能强: LED 灯串可从 1 个到几十个 LED 高亮度灯
- ※ 亮度可调:通过EN端PWM,调节LED灯亮度

应用范围:

- ※ 干电池供电 LED 灯串
- ※ LED 灯杯
- ※ RGB 大显屏高亮度 LED 灯
- ※ 平板显示器 LED 背光灯
- ※ 恒流充电器控制
- ※ 通用恒流源


管脚排列与说明:

VER: 1.0

序号	管脚名称	功能描述
1	VSS	电源负极
2	EN	芯片使能端
3	COMP	内部比较器补偿
4	FB	电压反馈端
5	DRV	外部 MOS 驱动端
6	CS	电流反馈检测脚
7	TOFF	关断时间设定
8	VDD	电源正极

功能方框图:

极限参数:

参数	符号	描述	值	单位
电压	Vmax	VDD 脚电压	8	V
电压	Vmin-max	EN,CS 和 FB 脚电压值	-0.3-VDD+0.3	V
温度	Tmin-max	工作温度范围	-20-85	°C
血/支	Tsorage	存储温度范围	-40-165	°C
ESD	VESD	EDS 电压(人体模式)	2000	V

主要电气性能和参数:

参数	符号	测试条件	最小	典型	最大	单位
电源电压	VDD		2.5		6.5	V
CS 脚反馈电压	Vcs		240	250	260	mV
FB 脚反馈电压	V_{FB}		970	1000	1030	mV
工作电流	IDD			0.5	1	mA
关断时间(Toff 脚悬空)	Toff			640		ns
待机电流	IDDQ				1	uA
EN 脚逻辑高电平	V_{ENH}		2.0			V
EN 脚逻辑低电平	V_{ENL}				0.8	V
DRV 脚电压上升时间	Trise	500pF 电容在 DRV 脚上时			50	ns
DRV 脚电压下降时间	V_{FALL}	500pF 电容在 DRV 脚上时			50	ns

应用指引:

HZ2105 是一款开关工作模式的大功率 LED 驱动 IC,正常工作时给外部的电感充放电,通过反馈脚的反馈,可以得到恒定的输出电流。正确的选择外围组件对整个电路的工作很重要。

1、电感:

电感的电感量的选用原则是确保流过电感的电流变化值,远小于通过电感的最大电流值。在正常工作中,电感处于一个充电放电的状态,当输入电压和输出电压的压差较大时,应相应加大电感的值,当压差小时可以用较小的电感。一般取值在几百微享到几毫享,视实际应用而定。

2、MOS 管:

在 110V 交流供电情况下,首先要考虑 MOSFET 的耐压,一般要求 MOSFET 的耐压高于 600V。其次,根据驱动 LED 灯电流的大小,选择 MOSFET 的 I_{DS} 最大电流。一般情况下,应选用 MOSFET 的 I_{DS} 最大电流是 LED 灯驱动电流的 5 倍以上。另外 MOSFET 的内阻要小; R_{DS} 应小于 0.5 欧以下, R_{DS} 越小,在 MOS 管上面的功率损耗越小,电路的变换效率就越高。

在 12V/24V 直流供电情况下,首先考虑的是 I_{DS} 最大电流值和 R_{DS} 值, R_{DS} 越小越好,选择小于 0.2 欧以下的 MOSFET 管。

3、LED 灯亮度调节:

LED 灯的亮度调节,可由以下二种方法:

第一种方法是通过改变 R_{CS} 的电阻, R_{CS} 的电阻越小,LED 灯的亮度越高, R_{CS} 电阻越大,亮度越小。

第二种方法是 PWM 调光方式, PWM 信号可由 CPU 产生,也可由其它脉冲信号产生, PWM 信号可控制通过 LED 灯的电流从 0 变到正常电流状态,即可使 LED 灯从暗变为正常亮度(由 R_{CS} 确定)。PWM 占空比越大(高电平时间长),亮度越亮。利用 PWM 控制 LED 的亮度,非常方便和灵活,是最常用的调光方法,PWM 的频率可从几十 Hz 到几千 KHz。

4、工作频率设定

工作频率由 R_{OSC} 和 C_{OSC} 来设定, R_{OSC} 接到 VDD 端, R_{OSC} 阻值越小,频率越高,RSC =510K时,工作频率约为 2.5MHz, C_{OSC} 越大,工作频率越低, C_{OSC} =200pF时,工作频率约 300KHz,工作频率的高低,是根据实际使用情况决定的。工作频率越高,电感可以越小,电感的成本越低,工作的频率 F_{SED} / T_{ON} 。 T_{OFF} = (1-D) • T_{SF} ; D 为占空比; T_{ON} 为 MOSFET 管接通时间, T_{OFF} 为 MOSFET 管断开时间。

5、使能端子

在 EN 端接(低电平)地时,HZ2105 处于休眠状态,此时,工作电流小于 10uA, 自耗电非常小,当 EN 端为高电平时,HZ2105 处于工作状态,此时空载工作电流约为 200uA。

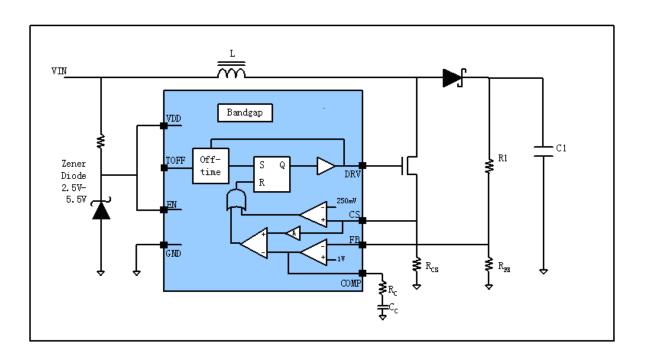
6、整流输出的滤波电流选择:

为了确保整流输出直流的纹波电压小于 15% (相对整流输出电压),整流滤波电频最小值如下:

 $Cmin=I_{LED}\times V_{LEDS}\times 0.06 / Vin^2$

(7) 设定 RCS

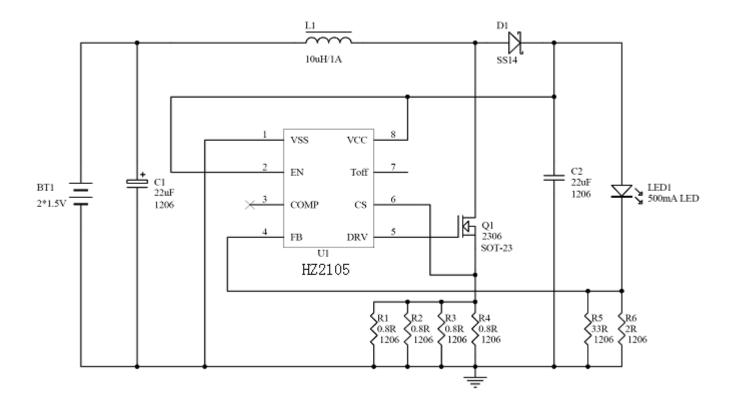
RCS 是电流传感电阻,MOSFET 的电流流过 RCS 时,会产生一个电压降 Vcs,当 Vcs 达到约 250mV 阀值电压时,MOSFET 关断,当 Vcs 低于阀值电压时,MOSFET 开启,从而控制 MOSFET 管的开/断,使储能电感周期性的放电充电,完成对 LED 的恒流驱动.


通过储能电感的最大电流为 I_{LMAX} =250 / R_{CS} (mA),通过 LED 的平均电流 ILED 约为 $3R \times I_{LMAX}$ 。 Rcs 阻值不同,就可设置通过 LED 的驱动电流, R_{CS} 越小,驱动电流越大。 R_{CS} 的选择公式如下:

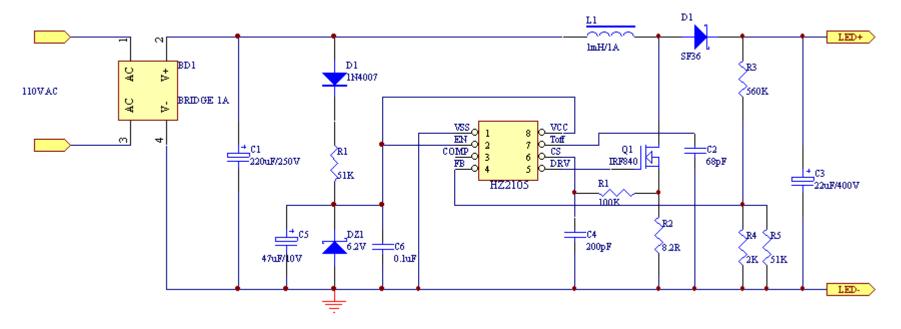
$$Rcs = \frac{250mV}{(I_{\text{LED}} + 0.5 \times I_{\text{L}})}$$

ILED 为通过 LED 灯的电流; IL 为通过电感 L 的峰值电流

例如: I_L=150mA I_{LED}=500mA 则 R_{CS}=0.43 Ω

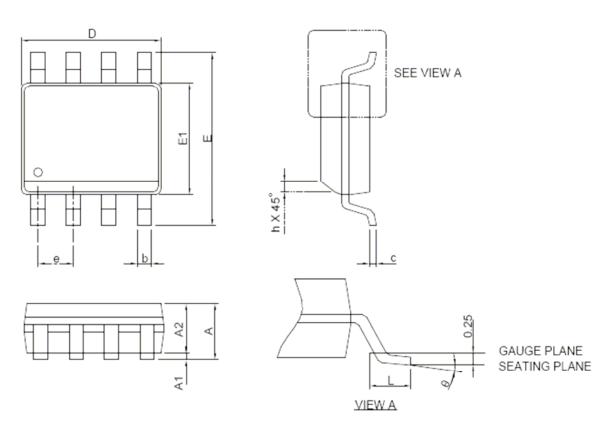

典型应用电路:

TEL: 0755-2696 9727

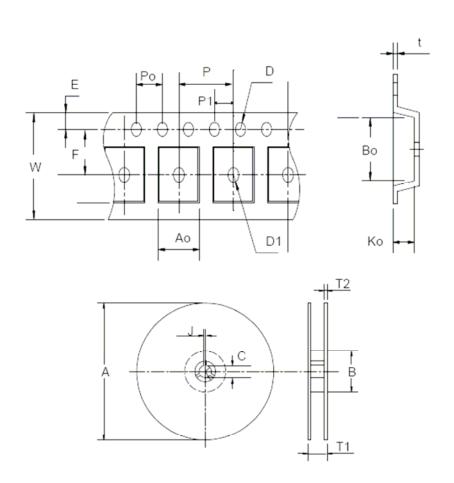

HTTP: //WWW.HEZEVI.COM FAX: 0755-8660 6159 E-MAIL: CZZKHN@126.COM

应用线路 1: 两个 AA 电池驱动一个 500 毫安的白光 LED

VER: 1.0


应用电路 2: 110V 交流电输入,驱动 80 个白光 LED,输出电流达到 20 毫安。

VER: 1.0


外型尺寸和封装信息:

SOP-8

Ş	SOP-8							
SY MBOL	MILLIM	ETER S	INCHES					
	MIN.	MAX.	MIN.	MAX.				
Α		1.75		0.069				
A1	0.10	0.25	0.004	0.010				
A2	1.25		0.049					
b	0.31	0.51	0.012	0.020				
С	0.17	0.25	0.007	0.010				
D	4.90 BSC		0.193 BSC					
Е	6.00 BSC		0.236 BSC					
E1	3.90 BSC		0.154 BSC					
е	1.00 BSC		0.050 BSC					
h	0.25	0.50	0.010	0.020				
L	0.40	1.27	0.016	0.050				
Ө	0°	8°	0°	8°				

包装尺寸:

Application	Α	В	С	J	T1	T2	W	Р	Е
	330±1	62 ± 1.5	12.75 +	2 + 0.5	12.4 +0.2	2± 0.2	12 + 0.3	8± 0.1	1.75± 0.1
			0.15				- 0.1		
SOP-8	F	D	D1	Po	P1	Ao	Во	Ko	t
	5.5 ± 0.1	1.55±0.1	1.55+ 0.25	4.0 ± 0.1	2.0 ± 0.1	6.4 ± 0.1	5.2± 0.1	2.1± 0.1	0.3±0.013

(mm)

包装

封装类型	包装单位	每卷数量
SOP-8	带/卷	2000PCS